Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

Determine the number of 5 cards combination out of a deck of 52 cards if there is exactly one ace in each combination

$\begin{array}{1 1}(A)\;778320\\(B)\;768320\\(C)\;758220\\(D)\;775320\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
One ace will be selected from four aces and four cards will be selected from $(52-4)=48$ cards
If $P$ is the required number of ways then,
$P=C(4,1)\times C(48,4)$
$\;\;\;=\large\frac{4!}{1!(4-1)!}\times \frac{4!}{4!(48-4)!}$
$\;\;\;=\large\frac{4(3!)}{1!(3)!}\times \frac{48\times 47\times 46\times 45\times 44!}{4\times 3 \times 2 \times 1\times44!}$
$\;\;\;\;=4\times 2\times 47\times 46\times 45$
$\;\;\;=778320$ ways
Hence (A) is the correct answer.
answered May 14, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App