This can be done in $4C_3\times 9C_4+4C_1\times 9C_3$ ways

$\Rightarrow \large\frac{4}{1}\times \frac{9\times 8\times 7\times 6}{1\times 2\times 3\times 4}$$+1\times \large\frac{9\times 8\times 7}{1\times 2\times 3}$ ways

$\Rightarrow 504+84$

$\Rightarrow 588$ ways

Hence (C) is the correct answer.