$\begin{array}{1 1}(A)\;1630\\(B)\;1631\\(C)\;1633\\(D)\;1632\end{array} $

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

This can be done in $9C_7+4C_1\times 9C_6+4C_2\times 9C_5+4C_3 \times 9C_4$

$\Rightarrow 9C_2+4C_1\times 9C_3+4C_2 \times 9C_4 +4C_1\times 9C_4$

$\Rightarrow \large\frac{9\times 8}{1\times 2}+\frac{4}{1}+\frac{9\times 8\times 7}{1\times 2\times 3 \times 4}+\frac{4}{1}\times \frac{9\times 8\times 7\times 6}{1\times 2\times 3\times 4}$

$\Rightarrow 36+4\times 84 +6\times 126+4\times 126$ ways

$\Rightarrow 36+336+126(6+4)$ ways

$\Rightarrow 36+336+1260$

$\Rightarrow 1632$ ways

Hence (D) is the correct answer.

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...