Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

In an examination a question paper consists of 12 questions divided into two parts (i.e) Part I and Part II.Containing 5 and 7 questions respectively.A student is required to attempt 8 question in all,selecting at least 3 from each part.In how many ways can a student select the questions 2

$\begin{array}{1 1}(A)\;320\\(B)\;420\\(C)\;520\\(D)\;620\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3).......(3)(2)(1)$
Students may select 8 questions according to the following scheme.
If P is the required number of ways,then
$P=C(5,3)\times C(7,5) +C(5,4)\times C(7,4)+C(5,5)\times C(7,3)$
$\;\;\;=\large\frac{5!}{3!2!}\times \frac{7!}{5!3!}+\frac{5!}{4!1!}\times \frac{7!}{4!3!}+\frac{5!}{5!0!}\times \frac{7!}{3!4!}$
$\;\;\;=\large\frac{5\times 4 \times 3!}{3!\times 2\times 1}\times \frac{7\times 6\times 5!}{5!\times 3\times 2\times 1}+\frac{5\times 4!}{4!}\times \frac{7\times 6\times 5\times 4!}{4!\times 3\times 2\times 1}+ \frac{5\times 7\times 6\times 5\times 4!}{3\times 2\times 1\times4!}$
$\;\;\;=10\times 7+5\times 35+5\times 35$
$\;\;\;=420$ ways
Hence (B) is the correct answer.
answered May 14, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App