Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

A candidate is required to answer 7 questions out of 12 questions,which are divided into two groups,each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. Find the number of different ways of doing questions.

$\begin{array}{1 1}(A)\;780\\(B)\;782\\(C)\;784\\(D)\;786\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
No of questions in part I=6
No of questions in part II=6
The different ways of doing the questions are
$\Rightarrow (6C_3\times 6C_4)+(6C_4\times 6C_3)+(6C_2\times 6C_5)+(6C_5\times 6C_2)$
$6C_3=\large\frac{6!}{3!\times 3!}$
$\Rightarrow \large\frac{6\times 5\times 4\times 3\times 2\times 1}{3\times 2\times 1\times 3\times 2\times 1}$
$\Rightarrow 20$
$6C_4=\large\frac{6!}{4!\times 2!}$
$\Rightarrow \large\frac{6\times 5\times 4\times 3\times 2\times 1}{4\times 3\times 2\times 1\times 2\times 1}$
$\Rightarrow 15$
$6C_2=\large\frac{6!}{2!\times 4!}$
$\Rightarrow \large\frac{6\times 5\times 4!}{2\times 4!}$
$\Rightarrow 15$
$\Rightarrow \large\frac{6\times 5!}{5!}$
$\Rightarrow 6$
$\Rightarrow (20\times 15)+(15\times 20)+(15\times 6)+(6\times 15)$
$\Rightarrow 300+300+90+90$
$\Rightarrow 780$
Hence (A) is the correct answer.
answered May 15, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App