Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

Find the number of different words that can be formed from the letters of the word TRIANGLE so that no vowels are together

$\begin{array}{1 1}(A)\;14300\\(B)\;14200\\(C)\;14400\\(D)\;14500\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $P(n,r)=\large\frac{n!}{(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3).....(3)(2)(1)$
Total no of vowels =3
Total no of consonants =5
The vowels can be placed in $\rightarrow 6P_3$
$\Rightarrow \large\frac{6!}{3!}$
$\Rightarrow \large\frac{6\times 5 \times 4\times 3!}{3!}$
$\Rightarrow 120$ ways
The consonants can be placed in their places in 5!
$\Rightarrow 5\times 4\times 3\times 2\times 1$
$\Rightarrow 120$ways
Total no of ways =$120\times 120$
$\Rightarrow 14400$ ways
Hence (C) is the correct answer.
answered May 15, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App