logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations

Find the number of different words that can be formed from the letters of the word TRIANGLE so that no vowels are together

$\begin{array}{1 1}(A)\;14300\\(B)\;14200\\(C)\;14400\\(D)\;14500\end{array} $

Download clay6 mobile app

1 Answer

Toolbox:
  • $P(n,r)=\large\frac{n!}{(n-r)!}$
  • $n!=n(n-1)(n-2)(n-3).....(3)(2)(1)$
Given
TRIANGLE
Total no of vowels =3
Total no of consonants =5
The vowels can be placed in $\rightarrow 6P_3$
$\Rightarrow \large\frac{6!}{3!}$
$\Rightarrow \large\frac{6\times 5 \times 4\times 3!}{3!}$
$\Rightarrow 120$ ways
The consonants can be placed in their places in 5!
$\Rightarrow 5\times 4\times 3\times 2\times 1$
$\Rightarrow 120$ways
Total no of ways =$120\times 120$
$\Rightarrow 14400$ ways
Hence (C) is the correct answer.
answered May 15, 2014 by sreemathi.v
 

Related questions

...
X