Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

A box contain two white,three black and four red balls. In how many ways can three balls be drawn from the box,if atleast one black ball is to be includedin the draw

$\begin{array}{1 1}(A)\;74\\(B)\;84\\(C)\;64\\(D)\;20\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
The possibilities of choosing at least one block ball are :-
1 black +2 non-black (or) 2black +1 non-black (or) 3 black +0 non-black
$\therefore$No of ways of choosing 3 balls with at least one black ball =$(3C_1\times 6C_2)+(3C_2\times 6C_1)+(3C_3\times 6C_0)$
$3C_1=\large\frac{3!}{1!2!}=\frac{3\times 2\times 1}{2\times 1}$
$\Rightarrow 3$
$6C_2=\large\frac{6!}{2!4!}=\frac{6\times 5\times 4!}{2\times 4!}$
$\Rightarrow 15$
$3C_2=\large\frac{3!}{2!1!}=\frac{3\times 2!}{2\times 1}$
$\Rightarrow 3$
$6C_1=\large\frac{6!}{1!\times 5!}$
$\Rightarrow 6$
$3C_3=\large\frac{3!}{3!\times 0!}$
$\Rightarrow 1$
$\Rightarrow (3\times 15)+(3\times 6)+1$
$\Rightarrow 45+18+1$
$\Rightarrow 64$
Hence (C) is the correct answer.
answered May 15, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App