Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

A group consists of 4 girls and 7 boys.In how many ways can a team of 5 members be selected if the team has at least one boy and one girl

$\begin{array}{1 1}(A)\;430\\(B)\;440\\(C)\;441\\(D)\;550\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
Since at least one boy and one girl are to be there in every team
$\therefore$ The team consist of
(a) 1 boy 4 girls $\rightarrow 7C_1\times 4C_4$
(b) 2 boys and 3 girls $\rightarrow 7C_2\times 4C_3$
(c) 3 boys and 2 girls $\rightarrow 7C_3\times 4C_2$
(d) 4 boys and 1 girl $\rightarrow 7C_4\times 4C_1$
$\therefore$ The required number of ways =$7C_1\times 4C_4+7C_2\times 4C_3+7C_3\times 4C_2+7C_4\times 4C_1$
$4C_3=\large\frac{4!}{3!1!}=\frac{4\times 3!}{3!\times 1}$$=4$
$7C_3=\large\frac{7!}{3!4!}=\frac{7\times 6\times 5\times 4!}{3\times 2\times 4!}$$=35$
$4C_2=\large\frac{4!}{2!2!}=\frac{4\times 3\times 2!}{2\times 1\times 2!}$$=6$
$7C_4=\large\frac{7!}{4!3!}=\frac{7\times 6\times 5\times 4!}{4!\times 3\times 2}$$=35$
$4C_1=\large\frac{4!}{1!3!}=\frac{4\times 3!}{1!\times 3!}$$=4$
$\Rightarrow 7\times 1+21\times 4+35\times 6+35\times 4$
$\Rightarrow 7+84+210+140$
$\Rightarrow 441$ ways
Hence (C) is the correct answer.
answered May 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App