$\begin{array}{1 1}(A)\;60\\(B)\;120\\(C)\;7200\\(D)\;720\end{array} $

- $C(n,r)=\large\frac{n!}{r!(n-r)!}$
- $n!=n(n-1)(n-2)(n-3)......(3)(2)(1)$

The no of ways of the consonants =$5C_3$

$\Rightarrow \large\frac{5!}{3!2!}$

$\Rightarrow \large\frac{5\times 4\times 3!}{3!\times 2}$

$\Rightarrow 10$

The no of ways of the vowel =$4C_2$

$\Rightarrow \large\frac{4!}{2!2!}$

$\Rightarrow \large\frac{4\times 3\times 2!}{2\times 2!}$

$\Rightarrow 6$

Total number of vowels & consonants =2+3=5

No of ways the words they appear =5!

$\Rightarrow 120$

Total no of ways =$120\times 10\times 6$

$\Rightarrow 7200$

Hence (C) is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...