Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

A five digit number divisible by 3 is to be formed using the numbers 0,1,2,3,4 and 5 without repetitions.The total number of ways this can be done is

$\begin{array}{1 1}(A)\;216\\(B)\;600\\(C)\;240\\(D)\;3125\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $n!=n(n-1)(n-2)(n-3).......(3)(2)(1)$
1+2+3+4+5=15 divisible by 3
The no of five digit numbers formed =5! ways
$\Rightarrow 120$ ways
The no of five digit numbers that can be formed using 0,1,2,3,4 can be
First digit $\rightarrow 4$ways
Second digit $\rightarrow 4$ways
Third digit $\rightarrow 3$ways
Fourth digit $\rightarrow 2$ways
Fifth digit $\rightarrow 1$way
Total no of ways =$4\times 4\times 3\times 2\times 1$
$\Rightarrow 4\times 4!$
$\Rightarrow 96$
Hence total number of ways =$120+96$
$\Rightarrow 216$
Hence (A) is the correct answer.
answered May 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App