Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

If the lines $\large\frac{x-1} {-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\large\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular, find the value of $k$.

$\begin{array}{1 1} k = \large\frac{-10}{7} \\ k = \large\frac{10}{7} \\ k = \large\frac{-7}{10} \\ k = \large\frac{7}{10}\end{array} $

Can you answer this question?

1 Answer

0 votes
  • If two lines are $\perp$ then $a_1a_2+b_1b_2+c_1c_2=0$
  • Where $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ are the direction cosines of the two lines.
Step 1:
Let $L_1=\large\frac{x-1}{-3}=\frac{y-2}{2x}=\frac{z-3}{2}$
$\quad\;\; L_2=\large\frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5}$
The direction ratios of $L_1$ are $-3,2k$ and $2$
The direction ratios of $L_2$ are $3k,1$ and $-5$
If the lines are $\perp$ then
Step 2:
Now substituting for $(a_1,b_1,c_1)$ and $(a_2,b_2,c_2)$ we get
Therefore $k=\large\frac{-10}{7}$
answered Jun 3, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App