Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Answer
Comment
Share
Q)

The total number of ways in which six '+' and four '-' signs can be arranged in a line such that no two signs '-' occur together is

$\begin{array}{1 1}(A)\;35\\(B)\;37\\(C)\;39\\(D)\;41\end{array} $

Do it question again by using permutation

1 Answer

Comment
A)
Toolbox:
  • $C(n,r)=\large\frac{n!}{r!(n-r)!}$
Total '-' signs =4
Total '+' signs =6
$-+-+-+-+-+-+-$
Hence possible place of '-' sign =7
$\therefore$ The total no of ways =$7C_4$
$\Rightarrow \large\frac{7!}{4!3!}$
$\Rightarrow \large\frac{7\times 6\times 5\times 4!}{4!\times 3\times 2}$
$\Rightarrow 35$
Total no of ways =35
Hence (A) is the correct answer.
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...