Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

A committee of 6 is to be chosen from 10 men and 7 women so as to contain atleast 3 men and 2 women . In how many different ways can this be done if two particular women refuse to serve on the same committee.

$\begin{array}{1 1}(A)\;7500\\(B)\;7600\\(C)\;7700\\(D)\;7800\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $n(C,r)=\large\frac{n!}{r!(n-r)!}$
Total number of men=10
Total number of women=7
Total number of members in the committee=6
The no of ways of at least 3 men and 2 women =$10C_3\times 7C_3+10C_4\times7C_2$
$10C_3=\large\frac{10!}{3!\times 7!}=\frac{10\times 9\times 8\times 7!}{7!\times 3\times 2}$
$\Rightarrow 120$
$7C_3=\large\frac{7!}{3!\times 4!}=\frac{7\times 6\times 5\times 4!}{3\times 2\times 4!}$
$\Rightarrow 35$
$10C_4=\large\frac{10!}{4!\times 6!}=\frac{10\times 9\times 8\times 7\times 6!}{4\times 3\times 2\times 6!}$
$\Rightarrow 210$
$7C_2=\large\frac{7!}{2!\times 5!}=\frac{7\times 6\times 5!}{ 2\times 5!}$
$\Rightarrow 21$
$10C_3\times 7C_3+10C_4\times 7C_2=12\times 35+210\times 21$
$\Rightarrow 4200+4410$
$\Rightarrow 8610$
The no of ways for 2 particular women to be always there =$10C_4+10C_3\times 5C_1$
$10C_4+10C_3\times 5C_1=210+120\times 5$
$\Rightarrow 210+600$
$\Rightarrow 810$
The no of ways when two particular women are never together =total-together
$\Rightarrow 8610-810$
$\Rightarrow 7800$
Hence (D) is the correct answer.
answered May 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App