Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Permutations and Combinations
0 votes

True-or-False:A candidate is required to answer 7 questions out of 12 questions which are divided into two groups,each containing 6 questions. He is not permitted to attempt more than 5 questions from either group. He can choose the seven questions in 650 ways.

$\begin{array}{1 1}(A)\;\text{True}\\(B)\;\text{False}\end{array} $

Can you answer this question?

1 Answer

0 votes
Total no of questions =12
Questions required to Ans =7
Two groups $\rightarrow 6-6$
No of ways =$6C_5\times 6C_2+6C_2\times 6C_5+6C_3\times 6C_4+6C_4\times 6C_3$
$6C_2=\large\frac{6!}{2!4!}=\frac{6\times 5}{2}$$=15$
$6C_3=\large\frac{6!}{3!3!}=\frac{6\times 5\times 4\times 3!}{3!\times 3\times 2}$$=20$
$6C_4=\large\frac{6!}{4!2!}=\frac{6\times 5\times 4!}{4!\times 2}$$=15$
No of ways =$6\times 15+15\times 6+20\times 15+15\times 20$
$\Rightarrow 90+90+300+300$
$\Rightarrow 180+600$
$\Rightarrow 780$ ways
Hence the given statement is false
answered May 16, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App