$\begin{array}{1 1}(A)\;(105)^2\\(B)\;210\times 243\\(C)\;105\times 243\\(D)\;\text{None of these}\end{array} $

- $C(n,r)=\large\frac{n!}{r!(n-r)!}$

Total vowel=5

Total consonants=21

$\therefore$ The number of selection of 1 pair of vowels and 1 pair of consonants =$5C_1\times 21C_1$

The required number of words =$5C_1\times 21C_1\times \large\frac{4!}{2!2!}$$+5C_2\times 21C_2\times 41$

$\Rightarrow 5\times 21 \times \large\frac{4\times 3\times 2\times 1}{2\times 2}$$+\large\frac{5!}{2!3!}\times \frac{21!}{2!19!}$$\times 4!$

$\Rightarrow 105\times 6+10(210\times 24)$

$\Rightarrow 105\times 6+10(5040)$

$\Rightarrow 630+50400$

$\Rightarrow 57030$

Hence (D) is the correct answer.

Ask Question

Tag:MathPhyChemBioOther

Take Test

...