logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Find the general solution of the equation $(\sqrt 3+1)\cos \theta+(\sqrt 3-1)\sin \theta=2$

$\begin{array}{1 1}(A)\;2n\pi\pm \large\frac{\pi}{4}+\frac{\pi}{12}&(B)\;n\pi\pm \large\frac{\pi}{6}\\(C)\;n\pi\pm \large\frac{\pi}{8}&(D)\;2n\pi\pm \large\frac{3\pi}{4}\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $a\cos \theta+b\sin \theta=c$
Given : $(\sqrt 3+1)\cos\theta +(\sqrt 3-1)\sin \theta=2$
Let $(\sqrt 3+1)=r\cos \alpha$
$(\sqrt 3-1)=r\sin \alpha$
$r\cos \alpha\cos \theta+r\sin \alpha\sin \theta=2$
$r(\cos \theta\cos \alpha+\sin \theta \sin \alpha)=2$
$r(\cos(\theta-\alpha)=2$
$\cos (\theta-\alpha)=\large\frac{2}{r}$
$\cos (\theta-\alpha)=\large\frac{1}{\sqrt 2}$$=\cos \large\frac{\pi}{4}$
$r=\sqrt{(\sqrt 3-1)^2+(\sqrt 3+1)^2}$
$\Rightarrow \sqrt{4-2\sqrt 3+4+2\sqrt 3}$
$\Rightarrow \sqrt 8=2\sqrt 2$
$\tan \alpha=\large\frac{\sqrt 3-1}{\sqrt 3+1}=$$\tan (\large\frac{\pi}{3}-\frac{\pi}{4})$
$\alpha=\large\frac{\pi}{12}$
$(\theta-\alpha)=2n\pi\pm \large\frac{\pi}{4}$
$\alpha=\large\frac{\pi}{12}$
$\theta=2n\pi\pm \large\frac{\pi}{4}+\frac{\pi}{12}$
Hence (A) is the correct answer.
answered May 20, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...