logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions

Find the radius of the circle in which a central angle of $45^{\large\circ}$ intercepts an arc 132cm

$\begin{array}{1 1}(A)\;150cm&(B)\;160cm\\(C)\;168cm&(D)\;178cm\end{array} $

Download clay6 mobile app

1 Answer

Toolbox:
  • Radian measure =$\large\frac{\pi}{180}\times$ Degree measure
  • $\theta=\large\frac{l}{r}$
Here
$l=132cm$
$\theta=45^{\large\circ}$
Radian measure =$45\times \large\frac{\pi}{180}$
$\Rightarrow \large\frac{\pi}{4}$ radians
Now,by $r=\large\frac{l}{\theta}$
We have
$r=132\times \large\frac{4}{\pi}$cm
$\Rightarrow 132\times 4\times \large\frac{7}{22}$cm
$\Rightarrow 168$cm
Hence (C) is the correct answer.
answered May 20, 2014 by sreemathi.v
 

Related questions

...
X