logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

In a circle of diameter 50cm,the length of a chord is 25cm.Find the length of the minor arc of the chord

$\begin{array}{1 1}(A)\;\large\frac{20\pi}{3}\normalsize cm\\(B)\;\large\frac{19\pi}{3}\normalsize cm\\(C)\;\large\frac{24\pi}{3}\normalsize cm\\(D)\;\large\frac{25\pi}{3}\normalsize cm\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Radian measure =$\large\frac{\pi}{180}\times $ Degree measure
  • $l=r\theta$
Here radius of the circle $r=\large\frac{50}{2}$$=25cm$
Let O be the centre of the circle and AB be the given chord such that AB=25cm
Now,OA=OB=r=25cm
AB=25cm
$\therefore \Delta OAB$ is equilateral
$\therefore\angle AOB=60^{\large\circ}=(60\times \large\frac{\pi}{180})$ radians
$\Rightarrow \large\frac{\pi}{3}$ radians
Let the length of the minor arc of chord AB be l,then
$l=r\theta$
$\;\;=25\times \large\frac{\pi}{3}$
$\;\;=\large\frac{25\pi}{3}$ cm
Hence (D) is the correct answer.
answered May 20, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...