Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If the arcs of the same length in two circles subtend angles of $60^{\large\circ}$ and $75^{\large\circ}$ at their respective centres,find the ratio of their radii

$\begin{array}{1 1}(A)\;2 : 3&(B)\;3 : 2\\(C)\;4 : 5&(D)\;5 : 4\end{array} $

Can you answer this question?

1 Answer

0 votes
  • Radian measure =$\large\frac{\pi}{180}$$\times $Degree measure
  • $l=r\theta$
Let $r_1$ and $r_2$ be the radii of the two circles,then
$\Rightarrow (60\times \large\frac{\pi}{180})^c=(\frac{\pi}{3})^c$
$\Rightarrow (75\times \large\frac{\pi}{180})^c=(\frac{5\pi}{12})^c$
Let the length of each arc be 'l' cm,then
$\Rightarrow (r_1\times \large\frac{\pi}{3})$$=(r_2\times \large\frac{5\pi}{12})$
$\Rightarrow \large\frac{r_1}{r_2}=\frac{5\pi}{12}\times \frac{3}{\pi}$
$\Rightarrow \large\frac{r_1}{r_2}=\frac{5}{4}$
Hence $r_1 : r_2=5 : 4$
Hence (D) is the correct answer.
answered May 21, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App