Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Evaluate $\sin 105^{\large\circ}+\cos 105^{\large\circ}$

$\begin{array}{1 1}(A)\;1&(B)\;\large\frac{1}{\sqrt 2}\\(C)\;\large\frac{1}{\sqrt 3}&(D)\;0\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\sin (A+B)=\sin A\cos B+\cos A\sin B$
We have
$\sin 105^{\large\circ}+\cos 105^{\large\circ}$
$\Rightarrow \sin (60^{\large\circ}+45^{\large\circ}+\cos(60^{\large\circ}+45^{\large\circ})$
$\Rightarrow (\sin 60^{\large\circ}\cos 45^{\large\circ}+\cos 60^{\large\circ}\sin 45^{\large\circ})+(\cos 60^{\large\circ}\cos 45^{\large\circ}-\sin 60^{\large\circ}\sin 45^{\large\circ})$
$\Rightarrow [(\large\frac{\sqrt 3}{2}\times \frac{1}{\sqrt 2})+(\large\frac{1}{2}\times \frac{1}{\sqrt 2})]+[(\large\frac{1}{2}\times \frac{1}{\sqrt 2})-(\large\frac{\sqrt 3}{2}\times \frac{1}{\sqrt 2})]$
$\Rightarrow \big[\large\frac{\sqrt 3}{2\sqrt 2}+\frac{1}{2\sqrt 2}+\large\frac{1}{2\sqrt 2}- \frac{\sqrt 3}{2\sqrt 2}\big]$
$\Rightarrow \large\frac{1}{\sqrt 2}$
Hence (B) is the correct answer.
answered May 21, 2014 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App