info@clay6.com
+91-9566306857
(9am to 6pm)
logo

Ask Questions, Get Answers

X
Want help in doing your homework? We will solve it for you. Click to know more.
 
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions

Prove that $\cos (45^{\large\circ}-A).\cos(45^{\large\circ}-B)-\sin(45^{\large\circ}-A)\sin(45^{\large\circ}-B)=\sin(A+B)$

1 Answer

Need homework help? Click here.
Toolbox:
  • $\cos(A+B)=\cos A.\cos B-\sin A.\sin B$
  • $\cos(90-\theta)=\sin \theta$
LHS
$\cos (45^{\large\circ}-A).\cos(45^{\large\circ}-B)-\sin(45^{\large\circ}-A)\sin(45^{\large\circ}-B)$
$\Rightarrow \cos(45^{\large\circ}-A)+ (45^{\large\circ}-B)$
$\cos(A+B)=\cos A.\cos B-\sin A.\sin B$
$\Rightarrow \cos(90^{\large\circ}-(A+B))$
$\cos(90-\theta)=\sin \theta$
$\Rightarrow \sin(A+B)$=RHS
Hence proved
answered May 21, 2014 by sreemathi.v
 

Related questions

...