info@clay6.com
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
Answer
Comment
Share
Q)

Prove that $\cos (45^{\large\circ}-A).\cos(45^{\large\circ}-B)-\sin(45^{\large\circ}-A)\sin(45^{\large\circ}-B)=\sin(A+B)$

1 Answer

Comment
A)
Need homework help? Click here.
Toolbox:
  • $\cos(A+B)=\cos A.\cos B-\sin A.\sin B$
  • $\cos(90-\theta)=\sin \theta$
LHS
$\cos (45^{\large\circ}-A).\cos(45^{\large\circ}-B)-\sin(45^{\large\circ}-A)\sin(45^{\large\circ}-B)$
$\Rightarrow \cos(45^{\large\circ}-A)+ (45^{\large\circ}-B)$
$\cos(A+B)=\cos A.\cos B-\sin A.\sin B$
$\Rightarrow \cos(90^{\large\circ}-(A+B))$
$\cos(90-\theta)=\sin \theta$
$\Rightarrow \sin(A+B)$=RHS
Hence proved
Home Ask Homework Questions
...