Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\alpha$ and $\beta$ are the solution of the equation $a\sec\theta+b\tan\theta=c$,then show that $\tan(\alpha+\beta)=\large\frac{2bc}{b^2-c^2}$

Can you answer this question?

1 Answer

0 votes
  • $\sec^2\theta=1+\tan^2\theta$
  • Sum of roots of quadratic equation $\alpha+\beta=-\large\frac{b}{a}$
  • Product $\alpha\beta=\large\frac{c}{a}$
We have $a\sec\theta+b\tan\theta=c$-----(1)
Squaring on both sides
It is given that $\alpha$ and $\beta$ are the solutions of equation (1)
$\therefore\tan\alpha$ and $\tan \beta$ will be roots of the quadratic equation (2)
$\tan\alpha+\tan \beta=-\large\frac{2bc}{a^2-b^2}$
$\tan\alpha\tan \beta=-\large\frac{a^2-c^2}{a^2-b^2}$
$\therefore \tan(\alpha+\beta)=\large\frac{\tan \alpha+\tan \beta}{1-\tan \alpha\tan \beta}$
$\Rightarrow \large\frac{-\Large\frac{2bc}{a^2-b^2}}{1-\Large\frac{a^2-c^2}{a^2-b^2}}$
$\Rightarrow \large\frac{-2bc}{c^2-b^2}\times \frac{a^2-b^2}{a^2-b^2-a^2+c^2}$
$\Rightarrow \large\frac{-2bc}{c^2-b^2}= \frac{2bc}{b^2-c^2}$
Hence proved
answered May 21, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App