Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Prove that the value of $5\cos \theta+3\cos (\theta+\large\frac{\pi}{3})+$$3$ lies between -4 and 10

Can you answer this question?

1 Answer

0 votes
  • $a\cos\theta+b\sin \theta$ are in the form $k\cos \phi$ or $k\sin \phi$
  • $k=\sqrt{a^2+b^2}$
  • $\cos(A+B)=\cos A\cos B+\sin A\sin B$
Let $Y=5\cos \theta+3\cos(\theta+\large\frac{\pi}{3})$$+3$
$\Rightarrow 5\cos \theta+3(\cos \theta\cos\large\frac{\pi}{3}$$-\sin \theta\sin \large\frac{\pi}{3})$$+3$
$\Rightarrow 5\cos\theta+\large\frac{3}{2}$$\cos \theta-\large\frac{3\sqrt 3}{2}$$\sin \theta+3$
$\Rightarrow \large\frac{13}{2}$$\cos \theta-\frac{3\sqrt 3}{2}$$\sin \theta+2$
$\Rightarrow 7(\large\frac{13}{14}$$\cos \theta-\large\frac{3\sqrt 3}{14}$$\sin \theta)+3$
Dividing & multiplying by
$(\sqrt{\large\frac{13}{2})^2+(\frac{-3\sqrt 3}{2})^2}=$$7$
Let $\cos \alpha=\large\frac{13}{14}$,then $\sin \alpha=\large\frac{3\sqrt 3}{14}$
Now $y=7(\cos \alpha\cos \theta-\sin \alpha\sin \theta)+3$
$\Rightarrow 7\cos (\theta+\alpha)+3$
Maximum value of $\cos(\theta+\alpha)=1$
Maximum value of y $7.1+3=10$
Minimum value of $\cos(\theta+\alpha)=-1$
Minimum value of y $7.(-1)+3=-4$
$5\cos \theta+3\cos (\theta+\large\frac{\pi}{3})+$$3$ lies between -4 and 10
Hence proved
answered May 21, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App