logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $2\tan\alpha=3\tan\beta$,prove that $\tan(\alpha-\beta)=\large\frac{\sin 2\beta}{5-\cos^2\beta}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\tan(A-B)=\large\frac{\tan A+\tan B}{1-\tan A\tan B}$
  • $\cos 2A=2\cos^2A-1$
  • $2\sin^2A=1-\cos2A$
Given :
$2\tan\alpha=3\tan\beta$
$\tan\alpha=\large\frac{3}{2}$$\tan \beta$
$\tan(\alpha-\beta)=\large\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}$
$\Rightarrow \large\frac{\Large\frac{3}{2}\tan\beta-\tan\beta}{1+\Large\frac{3}{2}\tan^2\beta}$
$\Rightarrow \large\frac{\tan\beta}{2+3\tan^2\beta}$
$\Rightarrow \large\frac{\Large\frac{\sin\beta}{\cos\beta}}{2+3\Large\frac{\sin^2\beta}{\cos^2\beta}}$
$\Rightarrow \large\frac{\sin\beta\cos\beta}{2\cos^2\beta+3\sin^2\beta}$
$\Rightarrow \large\frac{\sin \beta\cos\beta}{1+\cos 2\beta+\Large\frac{3}{2}\normalsize(1+\cos 2\beta)}$
$\Rightarrow \large\frac{2\sin \beta\cos\beta}{5+2\cos \beta-3\cos 2\beta}$
$\Rightarrow \large\frac{\sin2 \beta}{5-\cos 2\beta}$=LHS
Hence proved.
answered May 22, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...