Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\sin x+\sin y=a$ and $\cos x+\cos y=b$,show that $\sin(x+y)=\large\frac{2ab}{a^2+b^2}$

Can you answer this question?

1 Answer

0 votes
  • $\sin \alpha+\sin \beta=2\sin (\large\frac{\alpha+\beta}{2})$$\cos (\large\frac{\alpha-\beta}{2})$
  • $\cos(\alpha-\beta)=\cos \alpha\cos\beta-\sin \alpha\sin \beta$
$2ab=2(\sin x+\sin y)(\cos x+\cos y)$
$\Rightarrow 2(\sin x\cos x+\sin x\cos y+\sin y\cos x+\sin y\cos y)$
$\Rightarrow \sin 2x+\sin 2y+2\sin(x+y)$
$\Rightarrow 2\sin(x+y)\cos(x-y)+2\sin (x+y)$
$\Rightarrow 2\sin(x+y)[\cos(x-y)+1]$------(1)
$a^2+b^2=(\sin x+\sin y)^2+(\cos x+\cos y)^2$
$\Rightarrow \sin^2x+\sin ^2y+2\sin x\sin y+\cos^2x+\cos ^2y+2\cos x\cos y$
$\Rightarrow (\sin ^2x+\cos^2x)+(\sin ^2y+\cos^2y)+2(\cos x\cos y+\sin x\sin y)$
$\Rightarrow 2+2\cos(x-y)$
$\Rightarrow 2(1+\cos(x-y)]$-------(2)
Dividing (1) by (2) we get
Hence proved
answered May 22, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App