Email
Chat with tutor
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
Answer
Comment
Share
Q)

If $\sin x+\sin y=a$ and $\cos x+\cos y=b$,show that $\sin(x+y)=\large\frac{2ab}{a^2+b^2}$

1 Answer

Comment
A)
Toolbox:
  • $\sin \alpha+\sin \beta=2\sin (\large\frac{\alpha+\beta}{2})$$\cos (\large\frac{\alpha-\beta}{2})$
  • $\cos(\alpha-\beta)=\cos \alpha\cos\beta-\sin \alpha\sin \beta$
$2ab=2(\sin x+\sin y)(\cos x+\cos y)$
$\Rightarrow 2(\sin x\cos x+\sin x\cos y+\sin y\cos x+\sin y\cos y)$
$\Rightarrow \sin 2x+\sin 2y+2\sin(x+y)$
$\Rightarrow 2\sin(x+y)\cos(x-y)+2\sin (x+y)$
$\Rightarrow 2\sin(x+y)[\cos(x-y)+1]$------(1)
$a^2+b^2=(\sin x+\sin y)^2+(\cos x+\cos y)^2$
$\Rightarrow \sin^2x+\sin ^2y+2\sin x\sin y+\cos^2x+\cos ^2y+2\cos x\cos y$
$\Rightarrow (\sin ^2x+\cos^2x)+(\sin ^2y+\cos^2y)+2(\cos x\cos y+\sin x\sin y)$
$\Rightarrow 2+2\cos(x-y)$
$\Rightarrow 2(1+\cos(x-y)]$-------(2)
Dividing (1) by (2) we get
$\large\frac{2ab}{a^2+b^2}=\frac{2\sin(x+y)[\cos(x-y)+1]}{2[1+\cos(x-y)]}$
$\large\frac{2ab}{a^2+b^2}=$$\sin(x+y)$
Hence proved
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.
...