Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

Evaluate : $\sin 18^{\large\circ}$

$\begin{array}{1 1}(A)\;\large\frac{\sqrt 5-1}{4}\\(B)\;\large\frac{\sqrt 5+1}{4}\\(C)\;\large\frac{\sqrt 7-1}{4}\\(D)\;\large\frac{\sqrt 7+1}{4}\end{array} $

Can you answer this question?

1 Answer

0 votes
Let $\theta=18^{\large\circ}$ then $5\theta=90^{\large\circ}$
$\sin 2\theta=\sin (90^{\large\circ}-3\theta)$
$\sin 2\theta=\cos3\theta$
$2\sin \theta\cos \theta=4\cos^3\theta-3\cos\theta$
Dividing by $\cos\theta$ both side
$2\sin \theta=4\cos^2\theta-3$
$2\sin \theta=4(1-\sin ^2\theta)-3$
$2\sin \theta=1-4\sin ^2\theta$
$4\sin^2\theta+2\sin \theta-1=0$
$\therefore \sin \theta=\large\frac{-2\pm \sqrt{4+16}}{8}=\frac{-2\pm 2\sqrt 5}{8}$
$\Rightarrow \large\frac{-1\pm \sqrt 5}{4}$
$\sin \theta=\large\frac{-1+\sqrt 5}{4}$ or $\large\frac{-1-\sqrt 5}{4}$
$\therefore \sin \theta=\sin 18^{\large\circ} > 0$ for $18^{\large\circ}$ in the first quadrant
$\therefore \sin \theta$ i.e $\sin 18^{\large\circ}=\large\frac{\sqrt 5-1}{4}$
Hence (A) is the correct answer.
answered May 22, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App