logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\cos \theta=\cos \alpha.\cos\beta$ prove that $\tan\large\frac{\theta+\alpha}{2}$$\tan\large\frac{\theta-\alpha}{2}=$$\tan^2\large\frac{\beta}{2}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\tan \large\frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}$
  • $\cos a-\cos b=-2\sin \large\frac{(a+b)}{2}$$\sin \large\frac{(a-b)}{2}$
  • $\cos a+\cos b=2\cos \large\frac{(a+b)}{2}$$\cos \large\frac{(a-b)}{2}$
$\cos \theta=\cos \alpha.\cos\beta$
$\therefore \cos \beta=\large\frac{\cos \theta}{\cos \alpha}$-----(1)
RHS
$\tan^2\large\frac{\beta}{2}=\frac{(1-\cos \beta)^2}{\sin ^2\beta}$
$\Rightarrow \large\frac{(1-\cos \beta)^2}{(1-\cos^2\beta)}=\frac{(1-\cos \beta)^2}{1-\cos\beta)(1+\cos \beta)}$
$\Rightarrow \large\frac{1-\cos \beta}{1+\cos \beta}=\frac{1-\Large\frac{\cos \theta}{\cos \alpha}}{1+\Large\frac{\cos \theta}{\cos \alpha}}$
$\Rightarrow \large\frac{\cos \alpha-\cos \theta}{\cos \alpha+\cos \theta}$
$\Rightarrow \large\frac{2\sin \large\frac{\alpha+\theta}{2}\sin \Large\frac{\theta-\alpha}{2}}{2\cos\Large\frac{\theta+\alpha}{2}\cos\Large\frac{\theta-\alpha}{2}}$
$\Rightarrow \tan \large\frac{\theta+\alpha}{2}.\frac{\theta-\alpha}{2}$
Hence proved
answered May 22, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...