info@clay6.com
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
Answer
Comment
Share
Q)

If $\cos\theta=\large\frac{\cos\alpha-\cos\beta}{1-\cos\alpha\cos\beta}$ then prove that one of the values of $\tan\large\frac{\theta}{2}$ is $\tan \large\frac{\alpha}{2}$$\cot \large\frac{\beta}{2}$

2 Answers

Comment
A)
Need homework help? Click here.
Tan thita/2= tan@/2 cot bits /2
Cot bits /2 = tan bits /2 ?????
 
Comment
A)
Need homework help? Click here.
Toolbox:
  • $\tan\large\frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}$
$\tan\large\frac{\theta}{2}=\frac{(1-\cos \theta)^2}{\sin^2 \theta}$
$\Rightarrow \large\frac{(1-\cos \theta)^2}{1-\cos^2\theta}$
$\Rightarrow \large\frac{1-\cos \theta}{1+\cos \theta}$
$\Rightarrow \large\frac{1-\Large\frac{\cos \alpha-\cos \beta}{1-\cos \alpha\cos\beta}}{1+\Large\frac{\cos \alpha-\cos \beta}{1-\cos \alpha\cos\beta}}$
$\Rightarrow \large\frac{1-\cos \alpha\cos\beta-\cos \alpha+\cos \beta}{1-\cos \alpha\cos \beta+\cos \alpha-\cos\beta}$
$\Rightarrow \large\frac{(1-\cos \alpha)+\cos\beta(1-\cos \alpha}{(1+\cos \alpha)-\cos \beta(1+\cos \alpha)}$
$\Rightarrow \large\frac{(1-\cos \alpha)(1+\cos \beta)}{(1+\cos \alpha)(1-\cos \beta)}$
$\Rightarrow \tan^2\large\frac{\alpha}{2}$$\cot^2\large\frac{\beta}{2}$
$\therefore \tan \large\frac{\theta}{2}=$$\pm \tan \large\frac{\alpha}{2}$$\tan\large\frac{ \beta}{2}$
Hence one of the values of $\tan\large\frac{\theta}{2}$ is $\tan \large\frac{\alpha}{2}$$\tan \large\frac{\beta}{2}$
Hence proved
Pls tell me how is this possible
tan2α2⇒tan2α2cot2β2cot2β2
∴tanθ2=∴tanθ2=±tanα2±tanα2tanβ2tanβ2
Hence one of the values of tanθ2tanθ2 is tanα2tanα2tanβ2tanβ2
Hence proved
Home Ask Homework Questions
...