logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Trigonometric Functions
0 votes

If $\tan(\cot x)=\cot(\tan x)$,prove that $\sin 2x=\large\frac{4}{(2n+1)\pi}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\tan(\large\frac{\pi}{2}$$-\theta)=\cot \theta$
  • $\tan \theta=\tan \alpha\Rightarrow \theta=n\pi+\alpha$
  • $\cos^2x+\sin^2x=1$
  • $2\sin A.\cos A=\sin 2A$
$\tan(\cot x)=\cot(\tan x)$
$\tan(\cot x)=\tan (\large\frac{\pi}{2}$$-\tan x)$
$\cot \theta=\tan (\large\frac{\pi}{2}$$-\theta$)
$\cot x=n\pi+(\large\frac{\pi}{2}$$-\tan x)$
$\tan \theta=\tan \alpha\Rightarrow \theta=n\pi+\alpha$
$\cot x+\tan x=n\pi+\large\frac{\pi}{2}$
$\large\frac{\cos x}{\sin x}+\frac{\sin x}{\cos x}=\large\frac{\pi}{2}$$(2n+1)$
$\large\frac{\cos^2x+\sin^2x}{\sin x\cos x}=\large\frac{\pi}{2}$$(2n+1)$
$\large\frac{1}{\sin x\cos x}$$=(2n+1)\large\frac{\pi}{2}$
$\large\frac{1}{2\sin x.\cos x}=$$(2n+1)\large\frac{\pi}{4}$
$\large\frac{1}{\sin 2x}=$$(2n+1)\large\frac{\pi}{4}$
$\sin 2x=\large\frac{4}{(2n+1)\pi}$
Hence proved
answered May 22, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...