logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XI  >>  Math  >>  Straight Lines
0 votes

Find equation of the line which is equidistant from parallel lines $9x + 6y – 7 = 0$ and $3x + 2y + 6 = 0.$

$\begin {array} {1 1} (A)\;18x-12y-11=0& \quad (B)\;18x-12y+11=0 \\ (C)\;18x+12y+11=0 & \quad (D)\;-18x+12y+11=0 \end {array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The perpendicular distance between of a line from a point $(x_1, y_1)$ is $ d= \bigg| \large\frac{Ax_1+By_1+c}{\sqrt{A^2+B^2}} \bigg|$
The equations of the given lines are :
$ \qquad 9x+6y-7=0$--------(1) and
$ \qquad 3x+2y+6=0$-------(2)
Let $p(a,b)$ be the point which is equidistant from lines (1) and (2)
The perpendicular distance of $p(a,b)$ from line (1) is given by
$ d_1 = \large\frac{|9a+6b-7|}{\sqrt{9^2+6^2}}$
$ = \large\frac{|9a+6b-7|}{\sqrt{117}}$
$ = \large\frac{|9a+6b-7|}{3\sqrt{13}}$
Similarly the perpendicular distance of $p(a,b)$ from line (2) is
$ d_2 = \large\frac{(3a+2b+6)}{\sqrt{(3)^2+(2)^2}}$
$ =\large\frac{(3a+2b+6)}{\sqrt{13}}$
Since $p(a,b)$ is equidistant from line (1) and (2) we get, $d_1=d_2$
$ \therefore \large\frac{|9a+6b-7|}{3\sqrt{13}}$$ = \large\frac{|3a+2b+6|}{\sqrt{13}}$
$ \Rightarrow |9a+6b-7| = 3|3a+2b+6|$
(i.e., ) $(9a+6b-7) = \pm 3(3a+2b+6) $ ( Considering the positive values)
(i.e.,) $(9a+6b-7) = 9a+6b+18$
This is not possible.
Hence $ 9a+6b-7 = -3(3a+2b+6)$
$\Rightarrow 9a+6b-7=-9a-6b-18$
$\Rightarrow 18a+12b+11=0$
Hence the required equation of the line is $ 18x+12y+11=0$
answered May 23, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...