If non - zero real numbers b and c are such that min f(x) > max g(x) , where
$\;f(x)=x^{2}+2bx+2c^{2}\;$ and $\;g(x)=-x^{2}-2cx+b^{2}\;(x \in R)\;$ ;then $\;|\large\frac{c}{b}|\;$ lies in the interval : - Clay6.com, a Free resource for your JEE, AIPMT and Board Exam preparation

If non - zero real numbers b and c are such that min f(x) > max g(x) , where
$\;f(x)=x^{2}+2bx+2c^{2}\;$ and $\;g(x)=-x^{2}-2cx+b^{2}\;(x \in R)\;$ ;then $\;|\large\frac{c}{b}|\;$ lies in the interval :