logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Let function F be defined as $\;F(x) =\int \limits_{1}^{x} \large\frac{e^{t}}{t} dt\;$ , x > 0 then the value of the integral $\;\int \limits_{1}^{x} \large\frac{e^{t}}{t+a} dt\;$ , where a > 0 , is :

$(a)\;e^{a} [F(x) -F(1+a)]\qquad(b)\;e^{-a} [F(x+a) -F(a)]\qquad(c)\;e^{a} [F(x+a) -F(1+a)]\qquad(d)\;e^{-a} [F(x+a) -F(1+a)]$

Can you answer this question?
 
 

Please log in or register to answer this question.

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...