Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Let function F be defined as $\;F(x) =\int \limits_{1}^{x} \large\frac{e^{t}}{t} dt\;$ , x > 0 then the value of the integral $\;\int \limits_{1}^{x} \large\frac{e^{t}}{t+a} dt\;$ , where a > 0 , is :

$(a)\;e^{a} [F(x) -F(1+a)]\qquad(b)\;e^{-a} [F(x+a) -F(a)]\qquad(c)\;e^{a} [F(x+a) -F(1+a)]\qquad(d)\;e^{-a} [F(x+a) -F(1+a)]$

Can you answer this question?

Please log in or register to answer this question.

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App