Want to ask us a question? Click here
Browse Questions
 Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

# Using elementary transformations, find the inverse of the matrix if it exists - $\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$

Can you answer this question?

## 1 Answer

+1 vote
Toolbox:
• There are six operations (transformations) on a matrix,three of which are due to rows and three due to columns which are known as elementary operations or transformations.
• Row/Column Switching: Interchange of any two rows or two columns, i.e, $R_i\leftrightarrow R_j$ or $\;C_i\leftrightarrow C_j$
• Row/Column Multiplication: The multiplication of the elements of any row or column by a non zero number: i.e, i.e $R_i\rightarrow kR_i$ where $k\neq 0$ or $\;C_j\rightarrow kC_j$ where $k\neq 0$
• Row/Column Addition:The addition to the element of any row or column ,the corresponding elements of any other row or column multiplied by any non zero number: i.e $R_i\rightarrow R_i+kR_j$ or $\;C_i\rightarrow C_i+kC_j$, where $i \neq j$.
• If A is a matrix such that A$^{-1}$ exists, then to find A$^{-1}$ using elementary row operations, write A = IA and apply a sequence of row operation on A = IA till we get, I = BA. The matrix B will be the inverse of A. Similarly, if we wish to find A$^{-1}$ using column operations, then, write A = AI and apply a sequence of column operations on A = AI till we get, I = AB.
Given:$A=\begin{bmatrix}3 & 10\\2 &7\end{bmatrix}$
Step :1 In order to use row elementary transformation we write as A=IA.
$\begin{bmatrix}3 & 10\\2& 7\end{bmatrix}=\begin{bmatrix}1 & 0\\0&1\end{bmatrix}A$
Step 2:Applying $R_1\rightarrow R_1-R_2$
$\begin{bmatrix}3-2 & 10-7\\2 &7\end{bmatrix}=\begin{bmatrix}1-0 & 0-1\\0&1\end{bmatrix}A$
$\begin{bmatrix}1 & 3\\2 &7\end{bmatrix}=\begin{bmatrix}1 & -1\\0&1\end{bmatrix}A$
Step 3: Applying $R_2\rightarrow R_2-2R_1$
$\begin{bmatrix}1 & 3\\2-2(1) & 7-2(3)\end{bmatrix}=\begin{bmatrix}1 & -1\\0-2(1)&1-2(-1)\end{bmatrix}A$
$\begin{bmatrix}1 & 3\\0 &1\end{bmatrix}=\begin{bmatrix}1 & -1\\-2&3\end{bmatrix}A$
Step 4: Applying $R_1\rightarrow R_1-3R_2$
$\begin{bmatrix}1-3(0) &3-3(1)\\0 &1\end{bmatrix}=\begin{bmatrix}1-3(-2) & -1-3(3)\\-2&3\end{bmatrix}A$
$\begin{bmatrix}1 & 0\\0 &1\end{bmatrix}=\begin{bmatrix}7 & -10\\-2&3\end{bmatrix}A$
$A^{-1}=\begin{bmatrix}7 &-10\\-2 & 3\end{bmatrix}$
answered Feb 16, 2013
edited Mar 18, 2013

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

0 votes
1 answer

+1 vote
1 answer

0 votes
1 answer