logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

If \( A = \begin{bmatrix} cos\: \alpha & sin\: \alpha \\ -sin\: \alpha & cos\: \alpha \end{bmatrix} \), then show that AA' = I.

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If A_{i,j} be a matrix m*n matrix , then the matrix obtained by interchanging the rows and column of A is called as transpose of A.
  • If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B: $\begin{bmatrix}AB\end{bmatrix}_{i,j} = A_{i,1}B_{1,j} + A_{i,2}B_{2,j} + A_{i,3}B_{3,j} ... A_{i,n}B_{n,j}$
  • $cos\:^2 \alpha+sin^2\alpha=1$
  • An identity matrix or unit matrix of size n is the n × n square matrix with ones on the main diagonal and zeros elsewhere. An identity matrix of order 2, $I_{2}= \begin{bmatrix} 1 &0 \\ 0&1 \end{bmatrix}$
Step1:
Given
$A = \begin{bmatrix} cos\: \alpha & sin\: \alpha \\ -sin\: \alpha & cos\: \alpha \end{bmatrix}$
Transpose can be obtained by changing the rows into column.
$A' = \begin{bmatrix} cos\: \alpha & -sin\: \alpha \\ sin\: \alpha & cos\: \alpha \end{bmatrix}$
Step2:
$AA'= \begin{bmatrix} cos\: \alpha & sin\: \alpha \\ -sin\: \alpha & cos\: \alpha \end{bmatrix}\begin{bmatrix} cos\: \alpha & -sin\: \alpha \\ sin\: \alpha & cos\: \alpha \end{bmatrix}$
$\Rightarrow \begin{bmatrix} cos\:^2 \alpha+sin^2\alpha & cos\alpha(-sin\alpha)+sin\: \alpha cos\alpha \\ -sin\: \alpha cos\alpha+cos\alpha sin\alpha & sin^2\alpha+cos\: ^2\alpha \end{bmatrix}$
$\Rightarrow \begin{bmatrix} 1 & -cos\alpha sin\alpha+sin \alpha cos\alpha \\ -sin \alpha cos\alpha+cos\alpha sin\alpha & 1 \end{bmatrix}$
$\Rightarrow \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$
$\Rightarrow AA'=I$
answered Apr 9, 2013 by sharmaaparna1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...