Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the shortest distance between lines $\hat{r} = 6\hat{i} + 2\hat{j} + 2\hat{k} + \lambda ( \hat{i} - 2\hat{j} + 2\hat{k} )$ and $\hat{r} = - 4\hat{i} - \hat{k} + \mu (3\hat{i} - 2\hat{j} - 2\hat{k} )$

Can you answer this question?

1 Answer

0 votes
  • The shortest distance between two lines is
  • $d=\begin{vmatrix}\large\frac{(\overrightarrow b_1\times \overrightarrow b_2).(\overrightarrow a_2-\overrightarrow a_1)}{\overrightarrow b_1\times \overrightarrow b_2}\end{vmatrix}$
Step 1:
Let the given lines be
$\overrightarrow r=6\hat i+2\hat j+2\hat k+\lambda(\hat i-2\hat j+2\hat k)$----(1)
$\overrightarrow r=-4\hat i+\hat k+\mu(3\hat i-2\hat j-2\hat k)$----(2)
We know that the shortest distance between two lines,$\overrightarrow r=\overrightarrow a_1+\lambda \overrightarrow b_1$ and $\overrightarrow r=\overrightarrow a_2+\lambda \overrightarrow b_2$ is given by
$d=\begin{vmatrix}\large\frac{(\overrightarrow b_1\times \overrightarrow b_2).(\overrightarrow a_2-\overrightarrow a_1)}{\overrightarrow b_1\times \overrightarrow b_2}\end{vmatrix}$
Step 2:
From equ(1) and equ(2) we can determine,
$\overrightarrow a_1=6\hat i+2\hat j+2\hat k$
$\overrightarrow b_1=\hat i-2\hat j+2\hat k$
$\overrightarrow a_2=-4\hat i-\hat k$
$\overrightarrow b_2=3\hat i-2\hat j-2\hat k$
Let us determine $(\overrightarrow a_2-\overrightarrow a_1)$
$(\overrightarrow a_2-\overrightarrow a_1)=(-4\hat i-\hat k)-(6\hat i+2\hat j+2\hat k)$
$\qquad\qquad\;\;=-10\hat i-2\hat j-3\hat k$
Step 3:
Next let us determine $\overrightarrow b_1\times \overrightarrow b_2=\begin{vmatrix}\hat i &\hat j&\hat k\\1 & -2 & 2\\3 &-2 & -2\end{vmatrix}$
On expanding we get,
$\hat i(4+4)-\hat j(-2-6)+\hat k(-2+6)$
$\Rightarrow 8\hat i+8\hat j+4\hat k$
$\overrightarrow b_1\times \overrightarrow b_2=8\hat i+8\hat j+4\hat k$
Step 4:
$\mid \overrightarrow b_1\times \overrightarrow b_2\mid=\sqrt{8^2+8^2+4^2}$
Step 5:
Now substituting the respective value we get
$d=\begin{vmatrix}\large\frac{(8\hat i+8\hat j+4\hat k).(-10\hat i-2\hat j-3\hat k)}{12}\end{vmatrix}$
We know that $\hat i.\hat i=\hat j.\hat j=\hat k.\hat k=1$
$\;\;\;=9$ units.
Hence the shortest distance between the given two lines is $9$ units.
answered Jun 4, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App