Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Derivatives
+1 vote

For the curve \(y = 4x^3 – 2x^5\), find all the points at which the tangent passes through the origin.

$\begin{array}{1 1} (A)\;(0,0),(1,-2),(-1,2) \\ (B)\;(0,0),(-1,-2),(1,2)\\ (C)\;(0,0),(1,2),(-1,2) \\ (D)\;(0,0),(1,-2) \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Equation of the tangent at $(x_1,y_1)$ where slope is $m$ is given by $y-y_1=m(x-x_1)$
  • Equation of the normal at $(x_1,y_1)$ where slope is $m$ is given by $y-y_1=\large\frac{-1}{m}$$(x-x_1)$
Step 1:
Let $(x_1,y_1)$ be the required point on the given curve $y=4x^3-2x^5$
$\Rightarrow y_1=4x_1^3-2x_1^5$-----(1)
Differentiating equ(1) w.r.t $x$ we get,
Therefore $\large\frac{dy}{dx}_{(x_1,y_1)}$$=12x_1^2-10x_1^4$
Step 2:
Equation of the tangent is $y-y_1=(12x_1^2-10x_1^4)(x-x_1)$
This passes through the origin hence $0-y_1=(12x_1^2+10x_1^4)(0-x_1)$
$\Rightarrow y_1=12x_1^3-10x_1^5$------(2)
Subtract equ(2) from equ(1)
$\Rightarrow 8x_1^3(x_1^2-1)=0$
$\Rightarrow x_1=0$ or $x_1=\pm 1$
Step 3:
When $x_1=0$ from equ(2) $y=0$
When $x_1=1$ from equ (2)
When $x_1=-1$ from equ(2)
Step 4:
Hence the required points are $(0,0),(1,2)$ and $(-1,-2)$
answered Jul 12, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App