Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int\limits _0 ^{\pi} \large\frac {x \sin x}{1+\cos ^2 x}$$dx$

Can you answer this question?

1 Answer

0 votes
  • $ \int \limits_a^b f(x)dx =F(b)-F(a)$
  • $\int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1} (x/a)$
  • If $f(x)$ is substituted by t, then $f'(x)dx=dt, $hence $\int f(x) dx=\int t.dt$
Step 1:
Given $I=\int \limits_0^{\pi} \large\frac{x \sin x}{1+\cos ^2 x} $$dx$
By applying the property, $\int \limits_0^a f(x)dx =\int \limits_0^a f(a-x) dx$
$I= \int \limits_0 ^\pi \large\frac{(\pi-x) \sin (\pi-x)}{1+\cos ^2 (\pi-x)}$$dx; $ we know $\sin (\pi-x)=\sin x\; \qquad\cos (\pi-x)=-\cos x$
Therefore $I=\int \limits_0^{\pi} \large\frac{(\pi-x) \sin x}{1+\cos ^2 x}$$dx$
$=\int \limits_0^{\pi} \large \frac{\pi \sin x }{1+\cos ^2 x }$$dx-\int \limits_0^{\pi} \large\frac{x \sin x}{1+\cos ^2 x}$$dx$
But $\large\frac{x \sin x}{1+\cos ^2 x}=$$I$
Therefore $I= \int \limits_0^\pi \large \frac{\pi \sin x }{1+\cos ^2 x} $$dx-I$
$2I=\pi \int \limits_0^\pi \large\frac{\sin x}{1+\cos ^2 x}$$dx$
Step 2:
Let $\cos x=t$ on differentiating w.r.t x,
$-\sin x dx= dt$
The limit also changes when we substitute t,
When $x=0,\; \cos 0=1=t$
When $ x=\pi, \;\cos \pi =-1 =t$
Therefore $ 2I=\pi \int \limits_{-1}^1 \large\frac{-dt}{1+t^2}$$=-\pi \int \limits_{-1}^1 \large\frac{dt}{1+t^2}$
This is of the form $\int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1} (x)$
Therefore $2I= -\pi \int \limits_{-1}^1 \large\frac{dt}{1+t^2}$$=-\pi \bigg[\tan ^{-1}t\bigg]_{-1}^1$
Applying the limits we get,
$2I=-\pi \bigg[\tan ^{-1}(1)-\tan ^{-1} (-1)\bigg]$
$\tan ^{-1}=\pi/4 $ and $\tan ^{-1}(-1) =-\pi/4$
Therefore $ 2I= -\pi [\pi/4-(-\pi/4)]$
$=-\pi [\pi/4+\pi/4]$
$=-\pi \times (\pi/2)=-\large\frac{\pi^2}{2}$
answered May 6, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App