Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate: $ \int \limits _0 ^{\pi} log(1+\cos x)dx$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits_a^b f(x)dx =F(b)-F(a)$
  • $\int \limits_0^a f(x)dx = \int \limits_0^a f(a-x)dx$
Step 1:
Given $I= \int \limits_0^\pi \log (1+\cos x)dx$-----(1)
By applying the property $\int \limits_0^a f(x)dx = \int \limits_0^a f(a-x)dx$
$I= \int \limits_0^{\pi} \log (1+\cos (\pi-x)dx)$
But $\cos (\pi- x) =-\cos x$
Therefore $I= \int \limits_ 0^{\pi} \log (1-\cos x) dx $-----(2)
Adding equ(1) and equ(2)
$2I= \int \limits_0^{\pi} \bigg[\log (1+\cos x)+\log (1-\cos x)\bigg] dx$
But $\log a+\log b=\log (a \times b)$
Thererfore $ 2I= \int \limits_0^{\pi} \log (1+\cos x) (1-\cos x) dx$
This is of the form $(a+b)(a-b) =a^2-b^2$
Therefore $2I= \int \limits_0^{\pi} \log (1-\cos ^2 x) dx$
We know $1-\cos ^2 x=\sin ^2 x$
Therefore $2I= \int \limits_0^{\pi} \log\; \sin ^2 x \qquad [But \; \log x^2 =2 \log x]$
Step 2:
Therefore $ 2I= \int \limits_0^\pi 2\log \;\sin x dx$
$I= \int \limits_0^\pi \log \sin x dx$
Since $ \int \limits_0^a f(x)dx =\int \limits _0^a f(a-x) dx$
$ 2 \int \limits _0^a f(x)=2 \int \limits_0^a f(2a-x)$
Therefore $ \int \limits_0^\pi \log \; \sin x= 2 \int \limits_0^{\pi/2} \log \; \sin (\pi-x) dx$
$= 2 \int \limits_0^{\pi/2} \log \; \sin x dx$-----(A)
Consider $\int \limits_0^{\pi/2} \log \; \sin x dx$-----(1)
By applying the property $\int \limits_0^a f(x)dx = \int \limits_0^a f(a-x)dx$
$\int \limits_0^{\pi/2} \log \; \sin (\pi/2-x) dx$
But $ \sin (\pi/2-x)=\cos x$
$I=\int \limits_0^{\pi/2} \log \; \sin (\pi/2-x) dx=\int \limits_0^{\pi/2} \cos x dx$------(2)
Step 3:
Adding equ (1) and equ(2)
$2I= \int \limits_0^{\pi/2} \log \; (\sin x+\log \cos x) dx$
But $\log a+\log b=\log (a \times b)$
Hence $ 2I=\int \limits_0^{\pi/2} \log ( \sin x \cos x) dx$
But $ \large\frac{2}{2}$$\sin x \cos x=$$\large\frac{1}{2}$$\sin 2x$
Therefore $ 2I=\int \limits_0^{\pi/2} \log \large \frac{ \sin 2x}{2}$$ dx$
But $ \log \bigg|\frac{a}{b} \bigg|= \log a -\log b$
Therefore $ 2I= \int \limits_0^{\pi/2} (\log \sin 2x -\log 2) dx$
$= \int \limits_0^{\pi/2} \log \; \sin 2x -\int \limits_0^{\pi/2} \log 2 dx$
Let $I_1= \int \limits_0^{\pi/2} \log \sin 2x$
The limits changes as we substitute for t,
When $x=0,t=0$
When $x=\pi/2,t=\pi$
Therefore $I_1=\large\frac{1}{2} $$\int \limits_0^\pi log \sin t.dt$
By property $ \int \limits \limits_0^{2a} f(x) dx= 2 \int \limits_0^a f(x)dx$ if $(2a-x)=f(x) $
Step 4:
Hence $I_1=\large\frac{1}{2}$$ \int \limits_0^\pi \log \sin t dt= \large\frac{1}{2}$$ .2 \int \limits _0^{\pi/2} \log \sin t.dt$
$= \int \limits_0^{\pi/2} \log \sin t.dt$
By property $\int \limits_0^a f(x) dx=\int \limits_0^a f(t) dt$
Hence $I_1= \int \limits_0^{\pi/2} \log \sin x dx$
Therefore $2I= I- \int \limits_0^{\pi/2} \log 2 .dx$
$I= - \log \int \limits_0^{\pi/2} \log 2\; dx$
Step 5:
On integrating we get
$I= -\log 2 \int \limits_0^{\pi/2} [dx] = -\log 2 [x]_0^{\pi/2}$
On applying limits we get,
$I= -\log 2 (\pi/2) =-\pi/2 \log 2$
Substituting in equ (A)
$I= 2 \int \limits_0^{\pi/2} \log \sin x dx=2 [ -\pi/2 \log 2]$
$= -\pi \log 2$
But $-\log a =log(1/a)$
Hence $I= \pi \log \large\frac{1}{2}$
answered May 7, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App