Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\Large\int \limits_{\normalsize 0}^{\normalsize \pi} $$\large\frac{x\; \tan x}{\sec x\; \text{cosec} x}$


$(B) \large\frac{\pi^2}{4}$

$(C) \large\frac{3\pi^2}{2}$

$ (D) \large\frac{\pi^2}{2}$

Can you answer this question?

1 Answer

0 votes
  • $(i)\; \int \limits_a^b f(x)dx =F(b)-F(a)$
  • $(ii)\; \tan x=\large\frac{\sin x}{\cos x}$
  • $(iii)\; \sec x=\large\frac{1}{\cos x}$
  • $(iv)\; cosec x=\large\frac{1}{\sin x}$
  • $(v)\; \bigg[\large\frac{1-\cos 2 x}{2}\bigg]=$$\sin ^2 x$
Consider $\large\frac{x \;\tan x}{\sec x \;cosec x}$
This can be written as $\Large \frac{x.\frac{\sin x}{\cos x}}{\frac{1}{\cos x}.\frac{1}{\sin x}}$
$=\large\frac{x\; \sin x}{\cos x} $$\times \sin x \cos x$
$=x \sin ^2 x$
But $ \sin ^2 x =\large\frac{1-\cos 2x}{2}$
Therefore $ x \sin ^2 x=\large\frac{x(1-\cos 2x)}{2}$
$=\large\frac{x}{2}- \frac{x \cos 2x}{2}$
Hence $I= \int \limits_0^ \pi (\large\frac{x}{2} -\frac{x \cos 2x}{2})$$ dx=\int \limits_0^{\pi} \large\frac{x}{2}-\frac{1}{2} \int \limits_0^{\pi} $$x \cos 2x dx$-----(1)
Consider $ \large\frac{1}{2} $$\int x \cos 2x dx$
This is of the form $\int udv$
we know $\int udv=uv-\int vdu$
Here Let $u=x$ on differentiating with respect to we get, $du=dx$
Let $ \cos 2x dx=dv$ on integrating we get $\large\frac{1}{2} $$\sin 2x =v$
Therefore substituting for u,v,du and dv we get,
$\large\frac{1}{2} $$\int x \cos 2x dx$$=\large\frac{1}{2} $$\bigg\{\bigg[ x (\large\frac{1}{2} $$\sin 2x)-\frac{1}{2}\int \sin 2x .dx\bigg]\bigg\}$
$=\large\frac{x \sin 2x}{4} -\frac{1}{4} $$\int \sin 2xdx$
On integrating
$=\large\frac{x \sin 2x}{4} -\frac{1}{4} (\frac{-\cos 2x}{2})$
$=\large\frac{x \sin 2x}{4} +\frac{\cos 2x}{8}$
Now substituting in equ (1)
we know $\int \large\frac{x}{2}=\frac{x^2}{4}$
Therefore $ \int \limits_0^{\pi} \large\frac{x}{2}$$dx-\int \limits_0^{\pi} \large\frac{x \cos 2x}{2} $$dx= \bigg[ \large\frac{x^2}{4}\bigg]_0^{\pi}-\bigg[ \frac{x \sin 2x}{4}+\frac{\cos 2x}{8}\bigg]_0^{\pi}$
Now applying the limits,
$I=\bigg(\large\frac{\pi ^2}{4}-\normalsize 0 \bigg)-\bigg[ \frac{\pi \sin 2 \pi}{4}-\normalsize 0-\frac{\cos 2 \pi}{8} +\frac{\cos 0}{8}\bigg]$
we know $\sin 2\pi =0, \cos 2 \pi =\cos 0=1$
Therefore $I=\large\frac {\pi^2}{4}-\frac{1}{8}+\frac{1}{8}$
answered Apr 25, 2013 by meena.p
edited Mar 25, 2014 by balaji.thirumalai
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App