Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int \limits_0^ {\pi/4} \sin 2x \sin 3x dx$

Can you answer this question?

1 Answer

0 votes
  • $(i)\; \int \limits_a^b f(x)dx =F(b)-F(a)$
  • $(ii)\; \cos (A-B)-\cos (A+B)= 2 \sin \bigg(\large \frac{A+B}{2}\bigg). \sin \bigg(\frac{A-B}{2}\bigg)$
  • $(iii)\; \int \cos x dx=\sin x$
Given $I= \int \limits_0^{\pi/4} \sin 2x \sin 3x dx$
Consider $\large\frac{1}{2}$$ [2 \sin 2x\sin 3x],$ this is of the form $ 2 \sin \bigg(\large\frac{A+B}{2}\bigg). $$\sin \bigg(\large\frac{A-B}{2}\bigg)=$$\cos (A-B)- \cos (A+B)$
Therefore $\large\frac{1}{2}$$ [2 \sin 2x\sin 3x]=\large\frac{1}{2}$$[(\cos x-\cos 5x )]$
Therefore $I=\large\frac{1}{2}$$\int \limits_0^{\pi/4} [\cos x-\cos 5x]dx$
$=\large\frac{1}{2}$$\bigg\{ \int \limits_0^{\pi/4} \cos x dx-\int \limits_0^{\pi/4} \cos x 5x\bigg\}$
On integrating we get
$I= \large\frac{1}{2} $$ \bigg[\sin x\bigg]_0^{\pi/4}$$-\bigg[\large\frac{\sin 5x}{5}\bigg]_0^{\pi/4}$
On applying limits,
$I=\large\frac{1}{2} $$\bigg\{ [\sin 4x-\sin 0]-\large\frac{1}{5} $$[\sin 5(\pi/4)-\sin 0]\bigg\}$
$\sin \pi/4=\sin 5 \pi/4 =\large\frac{1}{\sqrt 2}$ and $ \sin 0=0$
Therefore $ I=\large\frac{1}{2}$$ \bigg[\sin \pi/4-\frac{1}{5} \sin \bigg(\large\frac{5 \pi}{5}\bigg)\bigg]$
$=\large\frac{1}{2} \bigg[ \frac{1}{\sqrt 2}-\frac{1}{5} \times \frac{1}{\sqrt 2}\bigg]$
$=\large\frac{1}{2} \bigg(\large\frac{6}{5 \sqrt 2}\bigg)$
$=\large\frac{3}{5 \sqrt 2}$
Multiply and divide by $\sqrt 2$
$=\large\frac{3}{5 \sqrt 2} \times \frac{\sqrt 2}{\sqrt 2} =\frac{3 \sqrt 2}{10}$
answered Apr 25, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App