Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int\limits_0^ \pi \large\frac{xdx}{a^2\cos^2x+b^2\sin^2x}$

Can you answer this question?

1 Answer

0 votes
  • $(i)\; \int \limits_a^b f(x)dx=F(b)-F(a)$
  • $(ii)\; \int \limits_a^b f(x)dx=\int \limits_a^b f(a-x)dx$
Step 1:
Given $I=\int\limits_0^ \pi \large\frac{xdx}{a^2\cos^2x+b^2\sin^2x}$-----(1)
By applying the property $ \int \limits_a^b f(x)dx=\int \limits_a^b f(a-x)dx$
$I=\int\limits_0^ \pi \large\frac{\pi-x}{a^2\cos^2(\pi-x)+b^2\sin^2(\pi-x)}$
$I=\int\limits_0^ \pi \large\frac{\pi-x}{a^2\cos^2 x+b^2\sin^2 x}$$dx$-----(2)
because $\cos ^2 (\pi-x)=\cos ^2 x \qquad \sin ^2 (\pi-x)=\sin ^2 x$
Add equ(1) and equ(2)
$2I=\int\limits_0^ \pi \large\frac{x}{a^2\cos^2x+b^2\sin^2x}+\int\limits_0^ \pi \large\frac{\pi-x}{a^2\cos^2x+b^2\sin^2x}$$dx$
$2I=\int\limits_0^ \pi \large\frac{x+\pi-x}{a^2\cos^2x+b^2\sin^2x}$$dx$
$=\int\limits_0^ \pi \large\frac{\pi}{a^2\cos^2x+b^2\sin^2x}$$dx$
By applying the property
$\int \limits_0^{2a} f(x)dx=\int \limits_0^a f(2a-x) dx$ if $ (f(x)=f(2a-x)$
Clearly if $f(x)=\large\frac{1}{a^2\cos^2x+b^2\sin^2x}$ then
$f(2a-x)= \large\frac{1}{a^2\cos(\pi-x)+b^2\sin^2x}$
Step 2:
Hence $2I=2 \pi\int\limits_0^ {\pi/2} \large\frac{dx}{a^2\cos^2x+b^2\sin^2x}$
divide the numerator and denominator by $\cos ^2 x$
$2I=2 \pi \int \limits_0^{\pi/2} \large\frac{dx/\cos ^2 x}{\Large\frac{a^2 \cos^2 x}{\cos ^2 x}+\frac{b^2 \sin ^2 x}{\cos^2 x}}$$dx$
But $\large\frac{1}{\cos ^2 x}=$$\sec^2 x$
and $ \large\frac{\sin ^2 x}{\cos ^2 x}=$$\tan ^2 x$
$2I=2 \pi \int\limits_0^ {\pi/2} \large\frac{\sec^2 x}{a^2+b^2\tan^2x}$$dx$
Put $\tan x=t$ on differentiating w.r.t x $\sec ^2 dx=dt$
The limits also changes, when we substitute t,
when $x=0, \tan 0=0 \;therefore \;t=0$
when $x=\pi/2, \tan \pi/2=\infty \;therefore \;t=\infty$
Therefore $ 2I=2 \pi \int \limits_0^\infty \large\frac{dt}{a^2+b^2t^2}$
$ 2I=2 \pi \int \limits_0^\infty \large\frac{dt}{b^2\bigg(\frac{a^2}{b^2}+t^2\bigg)}$
$ 2I=\large\frac{2 \pi}{b^2} \int \limits_0^\infty \large\frac{dt}{\bigg(\frac{a}{b}\bigg)^2+t^2}$
This is of the form $\int\large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}(x/a)$
Step 3:
Here $a=a/b\;and\;x=t$
On integrating we get
$2I=\large\frac{2\pi}{b^2} \bigg[\frac{b}{a} $$\tan ^{-1} \bigg(\large\frac{t}{a/b}\bigg)\bigg]$
$I=\large\frac{\pi}{b^2} \times \frac{b}{a} \bigg[$$\tan ^{-1} \bigg(\large\frac{bt}{a}\bigg)\bigg]_0^\infty$
On applying limits, $I=\large\frac{\pi}{ab} $$\bigg[\tan ^{-1} \infty-\tan 0\bigg]$
But $\tan ^{-1} \infty =\pi/2$ and $\tan 0=0$ Therefore $I=\large\frac{\pi}{ab} \times \frac{\pi}{2}=\frac{\pi^2}{2ab}$
Therefore $I=\large\frac{\pi^2}{2ab}$
answered Apr 25, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App