Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int\limits_{-\pi/2}^ {\pi/2} |\sin x|dx$

Can you answer this question?

1 Answer

0 votes
  • $(i)\; \int \limits_a^b f(x)dx=F(b)-F(a)$
  • $(ii)\;\int \limits_{-a}^a f(x) dx=2 \int \limits_0^a f(x) dx$ is an even function. If $f(-x)=+f(x)$ then $f(x)$ is an even function
Given $ I=\int \limits_{-\pi/2}^{\pi/2} |\sin x| dx$
Let $f(x) =|\sin x|$
Therefore $f(-x)=|\sin (-x)|=|-\sin x|=\sin x =f(x)$
Therefore $ |\sin x|$ is an even function
Hence $\int \limits_{-a}^a f(x) dx=2 \int \limits_0^{a} f(x)dx $ if it is an even function
Therefore $ I=2 \int \limits_{-\pi/2}^{\pi/2}|\sin x| dx=2\int \limits_0^{\pi/2} |\sin x|dx$
Therefore $I=2 \int \limits_0^{\pi/2} \sin x dx$
This is because $\sin x$ is positive on $[0,\pi/2]$ and hence $|\sin x|=\sin x$
Step 2:
On integrating we get,
$ 2 \bigg[\cos x\bigg]_0^{\pi/2}=2$
On applying limits we get
$2 [\cos \pi/2-\cos 0]$
But $ \cos \pi/2=0 \;and\; \cos 0=1$
Hence $I=2(1) =2$
Therefore $ \int \limits_{-\pi/2}^{\pi/2} |\sin x| dx=2$
answered Apr 25, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App