Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Find the value of \( \tan{-1} \bigg(\large \frac{x}{y} \bigg)-\tan^{-1} \bigg(\large \frac{x-y}{x+y} \bigg). \)

This question is Q.No. 17 of Misc. chapter 2

Can you answer this question?

1 Answer

0 votes
  • \( tan^{-1}\alpha-tan^{-1}\beta=tan^{-1}\large\frac{\alpha-\beta}{1+\alpha\beta}\:\:\alpha\beta<1\)
Ans: (C) \(\frac{\pi}{4}\)
Given $ tan^{-1}\large \frac {x}{y} -tan^{-1}\large \frac {x-y}{x+y}$
We know that \( tan^{-1}\alpha-tan^{-1}\beta=tan^{-1}\large\frac{\alpha-\beta}{1+\alpha\beta}\:\:\alpha\beta<1\)
Let's take \(\alpha=\large\frac{x}{y}\:and\:\beta=\large\frac{x-y}{x+y}\)
\(1+ \alpha \beta=1+ \large \frac{x}{y} \frac{x-y}{x+y}= \large\frac{y(x+y)+x(x-y)}{y(x+y)} = \large\frac{xy+y^2+x^2-xy}{y(x+y)} = \large\frac{x^2+y^2}{y(x+y)} \)
\(\alpha -\beta=\large \frac{x}{y}-\large \frac{x-y}{x+y}=\large\frac{x(x+y)+y(x-y)}{y(x+y)} =\large \frac{x^2+xy-xy+y^2}{y(x+y)} = \large\frac{x^2+y^2}{y(x+y)} \)
Since $\alpha - \beta = 1+\alpha\;\beta \rightarrow tan^{-1}\large\frac{\alpha-\beta}{1+\alpha\beta} = \tan^{-1}1 = \large\frac{\pi}{4}$
answered Feb 28, 2013 by thanvigandhi_1
edited Mar 18, 2013 by rvidyagovindarajan_1

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App