Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate: $\int\limits_0^ a \frac{dx}{x+\sqrt {a^2-x^2}}$

Can you answer this question?

1 Answer

0 votes
  • $ \int \limits_a^b f(x)dx=F(b)-F(a)$
  • $(ii)\; \int \limits_0^a f(x) dx= \int \limits_0^a f(a-x)dx$
given $ I=\int \limits_0^a\large \frac {dx}{x+\sqrt {a^2-x^2}}$
put $x=a \sin \theta$ on differentiating w.r.t x,
$dx= a\cos \theta d\theta$
The limits also change as we substitute $x=a \sin \theta,$
When $x=0, a\sin \theta=0 =>\theta=0$
When $x=a,a \sin \theta=a=>\sin \theta=1=>\theta=\pi/2$
On substituting $\sin \theta\; and\; d \theta$,
Therefore $I=\int \limits_0^{\pi/2} \large\frac{a \cos \theta \;d \theta}{a \sin \theta+\sqrt {a^2-a^2\sin ^2 \theta}}$
$=\int \limits_0^{\pi/2} \large\frac{a \cos \theta \;d \theta}{a \sin \theta+a\sqrt {1-\sin ^2 \theta}}\qquad$ But $ \sqrt {1-\sin ^2 \theta}=\cos \theta$
Therefore $I=\int \limits_0^{\pi/2} \large\frac{a \cos \theta \;d \theta}{a \sin \theta+a \cos \theta}$------(1)
By applying the property $ \int \limits_0^a f(x) dx= \int \limits_0^a f(a-x)dx$
$I=\int \limits_0^{\pi/2} \large\frac{a \cos (\pi/2-\theta) \;d \theta}{a \sin (\pi/2-\theta)+a \cos (\pi/2-\theta)}$
But $\sin(\pi/2-\theta)=\cos \theta\;and\; \cos (\pi/2-\theta)=\sin \theta$
Therefore $I=\int \limits_0^{\pi/2} \large\frac{a \sin \theta \;d \theta}{a \cos \theta+a \sin \theta}$------(2)
Add equ (1) and equ (2)
$2I=\int \limits_0^{\pi/2}\bigg( \large\frac{a \sin \theta}{a \cos \theta+a \sin \theta}+\large\frac{a \cos \theta }{a \cos \theta+a \sin \theta}\bigg)$$d \theta$
$=\int \limits_0^{\pi/2} \large\frac{a \sin \theta+a \cos \theta}{a \cos \theta+a \sin \theta}$$d\theta$
$2I=\int \limits_0^{\pi/2} d\theta$
On integrating we get
$2I= \bigg[0\bigg]_0^{\pi/2}$
On applying the limits,
Therefore $ I=\large\frac{\pi}{4}$
answered May 6, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App