logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Model Papers
0 votes

Write the direction cosines of the vector \( -2\hat i + \hat j - 5\hat k \).

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The cosines of the angle made by the vector with the coordinate axes is called direction cosines
  • Direction cosine (D.C) of vector $ x\hat i + y\hat j + 2\hat k$ is $ \large\frac{x}{\sqrt{x^2+y^2+z^2}}, \large\frac{y}{\sqrt{x^2+y^2+z^2}}, \large\frac{z}{\sqrt{x^2+y^2+z^2}}$
Step 1:
Let $\overrightarrow a=-2\hat i+\hat j-5\hat k$
$\mid \overrightarrow a\mid=\sqrt{(-2)^2+(1)^2+(-5)^2}$
$\qquad=\sqrt{4+1+25}$
$\qquad=\sqrt{30}$
Step 2:
Direction cosine (D.C) of vector $ x\hat i + y\hat j + 2\hat k$ is $ \large\frac{x}{\sqrt{x^2+y^2+z^2}}, \large\frac{y}{\sqrt{x^2+y^2+z^2}}, \large\frac{z}{\sqrt{x^2+y^2+z^2}}$
Hence the direction cosines are $\large\frac{-2}{\sqrt{30}},\frac{1}{\sqrt{30}},\frac{-5}{\sqrt{30}}$
answered Dec 2, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...