Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int \limits_1^4 [\; \left |x-1 \right|+\left |x-2 \right |+\left| x-3\right |\;]\;dx$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits _a^b f(x)dx=F(b)-F(a)$
  • $\int \limits _a^b |x-c| dx$ Here we need to break the interval into two subintervals.
  • If $(x-c) \geq 0 \;(ie)\; x \geq c,$ then the interval is from a to c
  • If $(x-c) \leq 0\; (ie)\; x \leq 0 \;(ie)\; x < c $ then the interval is from c to b
Given $I=\int \limits_{-1}^2 f(x)dx$ where $f(x)=|x-1|+|x|+|x-1|$
First of all let us equate the expressions in mod to 0
Hence (x+1) gives x=-1
(x) gives x=0
(x-1) gives x=1
Therefore x=-1,x=0 and x=1.which is in acsending order
Now let us break the given interval [-1,2] into three subintervals [-1,0] [0,1] and [1,2]
case (i) on subinterval [-1,0] where $(x+1) \geq x \leq 0\;and\;(x-1) \leq 0$
Hence $f(x)=|x+1|+|x|+|x-1|$
case(ii) Let us consider the subinterval [0,1], where $(x+1) \geq 0,x \geq 0$ and |x-1|=-(x-1)
Hence $f(x)=|x+1|+|x|+|x-1|$
case(iii) Let us consider the subinterval [1,2] where $(x+1) > 0,|x| \leq 0$ and $(x-1) \geq 0$
Hence $f(x)=|x+1|+|x|+|x-1|$
Therefore $\int \limits_{-1}^2 f(x)dx=\int \limits_{-1}^0 f(x)dx+\int \limits_0^1 f(x)dx+\int \limits_{1}^2 f(x)dx$
$=\int \limits_{-1}^0 (2-x)dx+\int \limits_0^1 (x+2)dx+\int \limits_1^2 3x dx$
On integrating we get
on applying the limits we get,
Hence $\int \limits_{-1}^2 f(x)dx=\large\frac{19}{2}$
answered Apr 2, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App