Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\int \limits_{-\pi}^{\pi} x^{20} \sin ^9x dx $

$\begin{array}{1 1}(A)\;-1\\(B)\;\large\frac{-1}{2}\\(C)\;\large\frac{\pi}{2}\\(D)\;0\end{array}$

Can you answer this question?

1 Answer

0 votes
  • $\int \limits _a^b f(x)dx=F(b)-F(a)$
  • $\int \limits _{-a}^a f(x)dx=0$ if f(x) is an odd function
  • If $f(-x)=-f(x),$ then the function is an odd function
Given $I=\int \limits_{-\pi}^{\pi} x^{20} \sin ^9x dx $
Let $ x^{20} \sin ^9x =f(x)$
if x is repaced by -x,
then $f(-x)=(-x)^{20}\; \sin^9(-x)$
But $ \sin (-x)=-\sin x$
$=x^{20} \times -\sin ^9(x)$
$=-[x^{20}.\sin ^9 x]$
Hence $f(-x)=-f(x)$
This is an odd function
we know if the given function is an odd funtion, then
$\int \limits _{-a}^a f(x)dx=0$
Hence I=0
answered Apr 1, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App