Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:$\large\int\limits_{-\pi}^\pi \frac {2x(1+\sin x)}{1+\cos ^2x}$

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits _a^b f(x)dx=F(b)-F(a)$
  • (ii) If $f(-x)=-f(x),$ then it is an odd function, then $\int \limits^a_{-a} f(x) dx=0$
  • (iii)If $f(-x)=f(x),$ thenit is an even function, then $\int \limits_{-a}^a f(x)dx= 2 \int\limits _0^a f(x)dx$
  • (iv)$ \large\int \frac{dx}{x^2+a^2}=\frac{1}{a}$$\tan ^{-1}(x/a)+c$
Step 1:
Given$I=\int\limits_{-\pi}^\pi \large\frac {2x(1+\sin x)}{1+\cos ^2x}$$dx=\int\limits_{-\pi}^\pi \large\frac {2x2\sin x}{1+\cos ^2x}$$dx$
on seperating the terms,
$\int\limits_{-\pi}^\pi \large\frac {2x}{1+\cos ^2x}$$dx+\int\limits_{-\pi}^\pi \frac {2x\sin x}{1+\cos ^2x}$$dx$
But $ \large\frac{2x}{1+\cos ^2x}$ is an odd function, because if x is replaced by -x we get $\large\frac{-2x}{1+\cos ^2x}$
Hence $\int\limits_{-\pi}^\pi \large\frac {2x}{1+\cos ^2x}$$dx=0\;Hence\;I_1=0$
Consider $\int\limits_{-\pi}^\pi \large\frac {2x\sin x}{1+\cos ^2x}$$dx$ is an even function
because if x is replaced by -x we get
$\large\frac{2(-x)(\sin(-x))}{1+\cos^2(-x)}=\frac{2x\sin x}{1+\cos ^2 x}\qquad $$(\sin (-x)=-\sin x)$
Step 2:
Let $I_2=\large\int\limits_{-\pi}^\pi \frac {2x\sin x}{1+\cos ^2x}$$dx$
Since it is an even function we can write this as
$2\int\limits_0^\pi \large\frac {2x\sin x}{1+\cos ^2x}$$dx$
$I_2=4\int\limits_0^\pi \large\frac {x\sin x}{1+\cos ^2x}$$dx$-----(1)
By applying the property $\int\limits_a^a f(x)dx=\int \limits_0^a f(a-x)dx$
$I_2=4\int\limits_0^\pi \large\frac {(\pi-x)\sin (\pi-x)}{1+\cos ^2(\pi-x)}$$dx$-----(2)
But $\sin (\pi-x)=\sin x$
$ 1+\cos ^2(\pi-x)=1+\cos ^2 x$
Adding equ(1) and (2) we get
$2I_2=4\int\limits_0^\pi \bigg[\large\frac {x\sin x}{1+\cos ^2x}+\frac {(\pi-x)\sin x}{1+\cos ^2x}\bigg]dx$
$=4\pi\int\limits_0^\pi \bigg[\large\frac {\sin x}{1+\cos ^2x}$$dx\bigg]_0^\pi$
Step 3:
Let $\cos x=t$ on differentiating w.r.t. x we get
$-\sin xdx=dt\qquad =>\sin x dx =-dt$
on substituting t and dt,
we also know that limit changes when we substitute for t,
when $x=0,t=\cos \;0=1$
when $x=1,t=\cos\; \pi=-1$
Hence $2I_2=4\pi\int\limits_1^{-1}\large\frac {-dt}{1+t^2}$
The negative symbol can be removed by changing the limits,
Therefore $2I_2=4\pi\int\limits_{-1}^1 \large\frac {dt}{1+t^2}$
This is of the form $\int \large\frac{dx}{x^2+a^2}=\frac{1}{a} $$\tan ^{-1}(\frac{x}{a})+c$
Therefore on integrating we get
$2I=4\pi[\tan ^{-1}(t)]_{-1}^1$
Step 4:
On applying limits we get,
But $ \tan ^{-1}(1)=\pi/4 \; and\;\tan ^{-1}(-1)=-\pi/4$
Therefore $2I_2=4\pi[\large\frac{\pi}{4}-(\frac{-\pi}{4})]$
$2I_2=4\pi(\large\frac{\pi}{2})$$=2 \pi ^2$
Therefore $I_2=\pi^2$
Hence $I=I_1+I_2$
answered Apr 29, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App