logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:\[\int_{-\pi}^\pi (\sin ^{-1}x+x^{295})\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i) $\int \limits_a^b f(x)dx=F(b)-F(a)$
  • (ii) If $f(-x) =-f(x),$ then the function is an odd function. hence for an odd function $\int \limits_{-a}^af(x)dx=0$
Given $I=\int_{-\pi}^\pi (\sin ^{-1}x+x^{295})_{dx}^{-a}$
 
Consider $ \sin ^{-1}(x)+x^{295}$ Replace x by -x
 
$ \sin ^{-1}(-x)+(-x)^{295}$
 
This is equal to 0,hence it is an odd function
 
We know $\int \limits_{-a}^af(x)dx=0$ if f(x) is an odd function
 
Therefore $I=\int_{-\pi}^\pi (\sin ^{-1}(x)+x^{295}){dx}=0$

 

answered Mar 14, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...