Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate:\[\int\limits_0^1 \sqrt{\frac{1-x}{1+x}}dx\]

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits_a^b f(x)dx=F(b)-F(a)$
  • (ii) $ 1-\cos 2x =2 \sin ^2 x$
  • (iii) $ 1+\cos 2x=2 \cos ^2x$
Given $\int\limits_0^1 \sqrt{\frac{1-x}{1+x}}dx$
Put $x=\cos 2\theta$ on differentiating w.r.t.x we get,
$dx=-2 \sin 2 \theta d\theta$
The limits also change when we substitude $ \theta$
when $x=0, \cos 2 \theta\;=>2 \theta =\frac{\pi}{2}=>\frac{\pi}{4}$
when $x=1, \cos \theta =1=> \theta =0$
Therefore $I=\int \limits_{\pi/4}^0 \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-2 \sin 2 \theta d \theta)$
we know that $1-\cos \theta=2 \sin ^2 \theta\;and\; 1+\cos \theta =2\cos ^2 \theta$
Therefore $I=-2 \int \limits_{\pi/4}^0 \sqrt {\frac{\sin ^2 \theta}{\cos ^2 \theta}}(\sin 2 \theta d\theta)$
$\sin 2 \theta=2 \sin \theta \cos \theta$
The negative symbol can be removed by changing the limits,
(ie) $I=2 \int \limits_0^{\pi/4} \frac{\sin \theta}{\cos \theta} 2 \sin \theta \cos \theta d\theta$
$=2 \int \limits_0^{\pi/4} 2 \sin ^2 \theta d \theta \qquad But \;2\sin^2\theta =1-\cos 2 \theta$
$=2 \int \limits_0^{\pi/4}(1-\cos 2 \theta) d \theta$
on integrating we get , $I=2 \bigg[\int \limits_0^{\pi/4} d \theta- \int \limits_0^{\pi/4} \cos 2 \theta d\theta\bigg]$
$=2\bigg\{[\theta]_0^{\pi/4}-\frac{1}{2}[\sin 2 \theta]_0^{\pi/4} \bigg\}$
On applying limits,
$2\{[\pi/4-0]-\frac{1}{2}[\sin 2.\pi/4-\sin 0]\} \qquad\; But\; \sin \pi/2=1$
Therefore $I=2.\frac{\pi}{4}-1=\frac{\pi}{2}-1$



answered Mar 15, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App